System No.### System Type### Fan Control### Cooling Type### Heating Type
1. Variable air volume with parallel fan-powered boxes\(^a\)### VAV\(^d\)### Chilled water\(^c\)### Electric resistance
2. Variable air volume with reheat\(^b\)### VAV\(^d\)### Chilled water\(^e\)### Hot water fossil fuel boiler\(^f\)
3. Packaged variable air volume with parallel fan-powered boxes\(^a\)### VAV\(^d\)### Direct expansion\(^c\)### Electric resistance
4. Packaged variable air volume with reheat\(^b\)### VAV\(^d\)### Direct expansion\(^c\)### Hot water fossil fuel boiler\(^f\)
5. Two-pipe fan coil### Constant volume\(^{ij}\)### Chilled water\(^c\)### Electric resistance
6. Water-source heat pump### Constant volume\(^{ij}\)### Direct expansion\(^c\)### Electric heat pump and boiler\(^g\)
7. Four-pipe fan coil### Constant volume\(^{ij}\)### Chilled water\(^e\)### Hot water fossil fuel boiler\(^f\)
8. Packaged terminal heat pump### Constant volume\(^{ij}\)### Direct expansion\(^c\)### Electric heat pump\(^h\)
9. Packaged rooftop heat pump### Constant volume\(^{ij}\)### Direct expansion\(^c\)### Electric heat pump\(^h\)
10. Packaged terminal air conditioner### Constant volume\(^{ij}\)### Direct expansion### Hot water fossil fuel boiler\(^f\)
11. Packaged rooftop air conditioner### Constant volume\(^{ij}\)### Direct expansion### Fossil fuel furnace

For SI: 1 foot = 304.8 mm, 1 cfm/ft\(^2\) = 0.0004719, 1 Btu/h = 0.293/W, °C = [(°F) -32]/1.8
\(^a\) **VAV with parallel boxes:** Fans in parallel VAV fan-powered boxes shall be sized for 50 percent of the peak design flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan-powered boxes shall be equal to the minimum rate for the space required for ventilation consistent with Section C403.4.4. Exception 4. Supply air temperature shall be reset based on zone demand. Design airflow rates shall be sized for the maximum reset supply air temperature. The air temperature for cooling shall be reset higher by 5°F under the minimum cooling load conditions.
\(^b\) **VAV with reheat:** Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft\(^2\) of floor area. Supply air temperature shall be reset based on zone demand. Design airflow rates shall be sized for the maximum reset supply air temperature. The air temperature for cooling shall be reset higher by 5°F under the minimum cooling load conditions.
\(^c\) **Direct expansion:** The fuel type for the cooling system shall match that of the cooling system in the proposed design.
\(^d\) **VAV:** When the proposed design system has a supply, return or relief fan motor horsepower (hp) requiring variable flow controls as required by Section C403.2.11.5, the corresponding fan in the VAV system of the standard reference design shall be modeled assuming a variable speed drive. For smaller fans, a forward-curved centrifugal fan with inlet vanes shall be modeled. If the proposed design’s system has a direct digital control system at the zone level, static pressure setpoint reset based on zone requirements in accordance with Section C403.4.1 shall be modeled.
\(^e\) **Chilled water:** For systems using purchased chilled water, the chillers are not explicitly modeled. Otherwise, the standard reference design’s chiller plant shall be modeled with chillers having the number as indicated in Table C407.5.1(5) as a function of standard reference building chiller plant load and type as indicated in Table C407.5.1(6) as a function of individual chiller load. Where chiller fuel source is mixed, the system in the standard reference design shall have chillers with the same fuel types and with capacities having the same proportional capacity as the proposed design’s chillers for each fuel type. Chilled water supply temperature shall be modeled at 44°F design supply temperature and 56°F return temperature. Piping losses shall not be modeled in either building model. Chilled water supply water temperature shall be reset in accordance with Section C403.4.2.4. Pump system power for each pumping system shall be the same as the proposed design; if the proposed design has no chilled water pumps, the standard reference design pump power shall be 22 W/gpm (equal to a pump operating against a 75-foot head, 65-percent combined impeller and motor efficiency). Each chiller shall be modeled with separate condenser water and chilled water pumps interlocked to operate with the associated chiller.
Fossil fuel boiler: For systems using purchased hot water or steam, the boilers are not explicitly modeled. Otherwise, the boiler plant shall use the same fuel as the proposed design and shall be natural draft. The standard reference design boiler plant shall be modeled with a single boiler if the standard reference design plant load is 600,000 Btu/h and less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Hot water supply temperature shall be modeled at 180°F design supply temperature and 130°F return temperature. Piping losses shall not be modeled in either building model. Hot water supply water temperature shall be reset in accordance with Section C403.4.2.4. Pump system power for each pumping system shall be the same as the proposed design; if the proposed design has no hot water pumps, the standard reference design pump power shall be 19 W/gpm (equal to a pump operating against a 60-foot head, 60-percent combined impeller and motor efficiency). The hot water system shall be modeled as primary only with continuous variable flow. Hot water pumps shall be modeled as riding the pump curve or with variable speed drives when required by Section C403.4.2.4.

Electric heat pump and boiler: Water-source heat pumps shall be connected to a common heat pump water loop controlled to maintain a heating setpoint of 60°F and cooling setpoint of 90°F. Heat rejection from the loop shall be provided by an axial fan closed-circuit evaporative fluid cooler with variable speed fans if required in Section C403.4.2.1 or C403.2.13. Heat addition to the loop shall be provided by a boiler that uses the same fuel as the proposed design and shall be natural draft. If no boilers exist in the proposed design, the standard reference building boilers shall be fossil fuel. The standard reference design boiler plant shall be modeled with a single boiler if the standard reference design plant load is 600,000 Btu/h or less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Piping losses shall not be modeled in either building model. Pump system power shall be the same as the proposed design; if the proposed design has no pumps, the standard reference design pump power shall be 22 W/gpm, which is equal to a pump operating against a 75-foot head, with a 65-percent combined impeller and motor efficiency. Loop flow shall be variable with flow shutoff at each heat pump when its compressor cycles off as required by Section C403.4.2.3. Loop pumps shall be modeled as riding the pump curve or with variable speed drives when required by Section C403.4.2.4.

Electric heat pump: Electric air-source heat pumps shall be modeled with electric auxiliary heat and an outdoor air thermostat. The system shall be controlled to energize auxiliary heat only when outdoor air temperature is less than 40°F. The air-source heat pump shall be modeled to continue to operate while auxiliary heat is energized. The air-source heat pump shall be modeled to operate down to a minimum outdoor air temperature of 35°F for System No. 8 or 0°F for System No. 9. If the Proposed Design utilizes the same system type as the Standard Design (PTHP or PSZ-HP), the Proposed Design shall be modeled with the same minimum outdoor air temperature for heat pump operation as the Standard Design. For temperatures below the stated minimum outdoor air temperatures, the electric auxiliary heat shall be controlled to provide the full heating load.

Constant volume: For building types governed by Section C403.6, fans shall be controlled to cycle with load; i.e., fan operation cycled on calls for heating and cooling. If the fan is modeled as cycling and the fan energy is included in the energy efficiency rating of the equipment, fan energy shall not be modeled explicitly. For all other buildings, fans shall be controlled in the same manner as in the proposed design; i.e., fan operation whenever the space is occupied or fan operation cycled on calls for heating and cooling. If the fan is modeled as cycling and the fan energy is included in the energy efficiency rating of the equipment, fan energy shall not be modeled explicitly.

Fan speed control: Fans shall operate as one- or two-speed as required by Section C403.2.11.5, regardless of the fan speed control used in the proposed building.

Outside air: For building types governed by Section C403.6, outside air shall be supplied by a separate dedicated outside air system (DOAS) operating in parallel with terminal equipment. The terminal equipment fan system cycle calls for heating and cooling. DOAS shall include an Energy Recovery Ventilation System with a minimum effectiveness in accordance with Section C403.5.

[Statutory Authority: RCW 19.27A.025, 19.27A.160, and 19.27.074. WSR 16-03-072, § 51-11C-407053, filed 1/19/16, effective 7/1/16. Statutory Authority: RCW 19.27A.020, 19.27A.025 and chapters 19.27 and 34.05 RCW. WSR 13-04-056, § 51-11C-407053, filed 2/1/13, effective 7/1/13.]

Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency.

(Effective July 1, 2020)

WAC 51-11C-407053 Reserved.