WAC 296-307-43503 How must containers be constructed? Containers must be constructed according to WAC 296-307-41011, and marked according to the applicable requirements of WAC 296-307-41015, and must also meet the following:

1. Containers designed for use as portable cylinders must be constructed according to DOT specifications.

2. All other containers whether designed for permanent mounting, or for portable or semiportable use (such as skid tanks), must be constructed as provided for by WAC 296-307-41009(4) and 296-307-41011(1).

3. Nonrecessed container fittings and accessories must be protected against damage by either:
 (a) Their location;
 (b) The vehicle frame or bumper; or
 (c) Protective housing. The housing must meet the requirements under which the tanks are fabricated with respect to design and construction and must be designed to withstand static loading in any direction equal to twice the weight of the tank and attachments when filled with the lading at a safety factor of at least four, based on the ultimate strength of the material used. The housing must have a weather cover if necessary to ensure proper operation of valves and safety devices.

4. Manually operated shut-off valves or self-closing internal valves must be closed except during transfer operations.

5. Permanently installed containers must meet the following requirements:
 (a) Tank motor vehicles with frames not made integral with the tank, as by welding, must have turnbuckles or similar positive devices for drawing the tank down tight on the frame. In addition, suitable stops or anchors must be attached to the frame and/or the tank to prevent relative motion between them from starting, stopping, and turning. The stops and anchors must be installed to be accessible for inspection and maintenance.
 (b) Any tank motor vehicle designed and constructed so that the cargo tank constitutes the stress member used instead of a frame must be supported by external cradles enclosing at least 120 degrees of the shell circumference. The design calculations must include beam stress, shear stress, torsion stress, bending moment, and acceleration stress for the cargo tank as a whole using a factor of safety of four, based on the ultimate tensile strength of the material. Maximum concentrated stresses that might be created at pads and cradles due to shear, bending, and torsion shall also be calculated according to Appendix G of the American Society of Mechanical Engineers, Unfired Pressure Vessel Code, 1968. Fully loaded vehicles must be assumed to be operating under highway conditions equal to two "g" loading. The effects of fatigue shall be taken into consideration. Cargo tanks mounted on frames may be supported by upright supports attached to pads if these factors are taken into account.
 (c) Where any tank support is attached to any part of a tank head, the stresses imposed upon the head must be provided for as required above.
 (d) Tank supports, stops, anchors, and bumpers must not be welded directly to the tank but must be attached by means of pads of the same material as the tank. The pad thickness must be at least 1/4 inch, or the thickness of the shell material if less, and no greater than the shell material. Each pad must extend at least four times its thickness, in each direction, beyond the weld attaching the support, bumper, stop, or anchor. Each pad must be preformed to an inside radius no
greater than the outside radius of the tank at the place of attach-
ment. Each pad corner must be rounded to a radius at least one-fourth
the width of the pad, and no greater than one-half the width of the
pad. Weepholes and tell-tale holes, if used, must be drilled or
punched before the pads are attached to the tank. Each pad must be at-
tached to the tank by continuous fillet welding using filler material
having properties that meet the recommendations of the maker of the
shell and head material.

(6) Portable or semiportable containers must meet the applicable
requirements of WAC 296-307-42507(3). Containers designed for perma-
nent installation as part of systems under WAC 296-307-420 are pro-
hibited.

(a) Filling connections must have an approved automatic back
pressure check valve, excess flow check valve, or quick closing inter-
nal valve to prevent excessive escape of gas in case the filling con-
nection is broken.

Exception: Where the filling and discharge connect on a common opening in the container shell, and the opening is fitted with a quick-closing internal valve, the automatic valve is not required.

Every inlet and outlet connection must have a manually or auto-
matically operated shut-off valve. Liquid discharge openings, except
those for engine fuel lines, on tanks built after September 1, 1965,
must be fitted with a remotely controlled internal shut-off valve. Valves must meet the following requirements:

(i) The seat of the valve must be inside the tank, or in the
opening nozzle or flange, or in a companion flange bolted to the noz-

(ii) All parts of the valve inside the tank, nozzle, or companion
flange must be made of material that protects against corrosion or
other deterioration in the presence of the lading.

(iii) The parts must be arranged so that damage to parts exterior
to the tank will not prevent effective seating of the valve.

(iv) The valve may be operated mechanically, by hydraulically, or
by air, or gas pressure.

(v) The valve must have remote means of automatic closure, both
mechanical and thermal, in at least two places for tanks over 3,500
gallons water capacity. These remote control stations must be located
at each end of the tank and diagonally opposite. The thermal control
mechanism must have a fusible element with a melting point between
220°F and 208°F. At least one remote control station must be provided
for tanks of 3,500 gallons water capacity or less, and such actuating
means may be mechanical.

(b) All other connections to containers, except those used for
gauging devices, thermometer wells, safety-relief devices, and plugged
openings, must have suitable automatic excess flow valves, or may in-
stead be fitted with quick-closing internal valves.

The control mechanism for the internal valve must have a secon-
dary control, remote from the fill or discharge connections (for use
in the event of accidents or fire during delivery operations), and
such control mechanism must have a fusible element with a melting
point not over 220°F or less than 208°F.

(c) Excess flow valves must close automatically at the rated flow
of vapor or liquid as specified by the valve manufacturers. The flow
rating of the piping beyond the excess flow valve must be greater than
that of the excess flow valve and such rating must include valves,
 fittings, and hose.

Exception: When branching or necessary restrictions are incorporated in a piping system so that flow ratings are less than that of the excess flow valve and the tank, then additional excess flow valves must be installed in the piping where such flow rate is reduced.
(d) Container inlets and outlets, except those used for safety-relief valves, liquid-level gauging devices, and pressure gauges, must be labeled to designate whether they communicate with vapor or liquid space when the container is filled to maximum permitted filling density. Labels may be on the valves.